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Abstract
The research field of the glass transition is experimentally driven. There is
an abundance of experimental data and facts accumulated in the past as well
as the emergence of important new results every now and then. Therefore,
when judging theories and models of the glass transition, it is fair to ask the
question of their relevance to experiments. This question was one of the themes
of a round-table discussion session entitled An assessment of current theories:
interconnections and relevance to experiments, organized at the 4th Workshop
on Non-equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous
Materials (4th WNEP). The coupling model has a history of making connections
of its theoretical results with many experimental facts on dynamics of glass-
forming substances. This characteristic of the coupling model is demonstrated
herein by using it to explain or rationalize some of the new experimental data
reported at the 4th WNEP and published in this volume and elsewhere.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

At the 4th Workshop on Non-equilibrium Phenomena in Supercooled Fluids, Glasses and
Amorphous Materials (4th WNEP), the papers presented were very stimulating. Two
round-table discussion sessions were organized to discuss issues that impact on our current
understanding or lack of understanding of the dynamics of the glass transition. Round Table
2 was organized by P G Debenedetti and H Z Cummins. It was entitled An assessment of
current theories: interconnections and relevance to experiments. As one of the discussion
leaders, one of us (KLN) spoke on the coupling model (CM) [1–8]. Since the emphasis of
the discussion was on relevance of theory to experiments, some examples of many previously
published applications of the CM to explain experimental data were given. Indeed, relevance
to experiments is the strength of the CM, as demonstrated by its ability to rationalize, explain,
and sometimes predict dynamics properties before verifications by experiments. A number of
papers presented at the 4th WNEP provide new experimental and simulation data that challenge
any theory to explain. In this paper, we demonstrate once more the relevance of the CM to
experiments by explaining some of these fresh experimental and simulation data, some of which
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had not yet been published when reported at the 4th WNEP but will appear as published papers
in this volume and elsewhere.

2. Invariance of the ratio τJG/τα for different T and P when τα is kept constant

Recent advances in experimental techniques including broadband dielectric relaxation and
light scattering have made possible measurements of structural relaxation (local segmental
relaxation in the case of polymers) in glass-forming substances under applied pressure typically
up to a few GPa. The dielectric relaxation and photon correlation spectroscopy data for more
than 30 polymeric and small molecular glass-formers (excluding those with hydrogen bonds)
show that the time/frequency dispersion of the structural α-relaxation is invariant for various
combinations of pressure P and temperature T when its most probable structural relaxation
time τα or frequency να is constant [9, 10]. The α-dispersions are uniquely and well described
in the time domain by the Kohlrausch functions,

φ(t) = exp[−(t/τα)1−n], (1)

with the following caveat. When fitting the frequency dependence of the α-loss peaks
obtained by dielectric relaxation by the one-sided Fourier transform of the Kohlrausch function,
emphasis of good agreement with the loss data is on the main peak, especially the low-
frequency side, if no significant conductivity contribution is present there, or has been removed
if present. This fit has taken into account nearly all the dielectric or mechanical strength of
the α-relaxation and the viscosity if the glass-former is not polymeric. Deviations of the
Kohlrausch fit to the data invariably occur at frequencies sufficiently high above the loss
maximum. The deviations are considered natural in the coupling model (CM) interpretation
of the evolution of dynamics with time [6–8]. They come from processes of smaller length-
scales that transpire at shorter times before the dynamics evolve to the one with maximum
length-scale and correlation function given by the Kohlrausch function. Thus, the experimental
fact of constant dispersion at constant τα for different T and P can be restated as the invariance
of the fractional exponent n (or the Kohlrausch exponent, βKWW ≡ 1 − n), which determines
the breadth of the dispersion. In other words, τα and n (or βKWW) are co-invariants of changing
thermodynamic conditions (T and P). This remarkable finding has an immense impact on
the glass transition. This is because theories or models of the glass transition, in which the
dispersion of the structural relaxation is not one of the determining factors of the structural
relaxation time, are unlikely to be consistent with this property by coincidence. An exception
is the coupling model (CM) [1–8], whose defining equation,

τα = [t−n
c τ0]1/(1−n), (2)

links together τα and the dispersion parameter n; that is, the relationship between the two
quantities is fundamental to the CM. The crossover time tc of the CM is determined by
the interaction potential and is independent of T and P . Nevertheless, equation (2) can be
fully consistent with the observed co-invariance of τα and n only if the primitive relaxation
time τ0 is simultaneously invariant to different T and P . To test this, we make use of the
similar nature of the theoretical primitive relaxation and the experimentally observed Johari–
Goldstein (JG) secondary relaxation, which leads to the expectation that their relaxation times
are approximately equal, i.e., τ0 ≈ τJG. This relation has been shown to hold for many
glass-formers by data taken at ambient pressure [6–8, 10, 11], whereby τ0 calculated from the
experimental quantities τα and n of the α-relaxation by equation (2) is indeed approximately
the same as the JG relaxation time τJG. Thus, a critical test of the CM’s explanation of the co-
invariance of τα and n is the simultaneous invariance of τJG to different T and P . Glass-formers
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having smaller n have smaller separation between log τα and log τ0 (or log τJG) according
to equation (2). As a result, the JG relaxation is not resolved and it appears as an excess
wing on the high-frequency flank of the α-loss peak. Dielectric relaxation experiments carried
out at elevated pressures up to 2 GPa and high temperatures to compare with data taken at
ambient pressure of 0.1 MPa have shown the shape of the entire dispersion including the α-
loss peak, and the excess wing remains unchanged at constant τα [9, 10, 12]. Of course, the
intensities or strengths of the two processes may have different T - and P-dependences and they
are responsible for slight deviation from perfect superposition of the data at high frequencies.
These experimental data already provide experimental support of the co-invariance of τα , n, and
τJG, or equivalently the co-invariance of τα, n, and τ0 as predicted by the CM. Nevertheless,
it would be more complete and convincing if one can observe the co-invariance of τα, n, and
τJG in glass-formers that have a resolved JG secondary relaxation. Such new data in which
the JG relaxation has been resolved in the liquid state and below Tg were reported at the
4th WNEP by Capaccioli and co-workers [13] in the neat glass-former benzoin-butyl-ether
(BIBE) [9, 10] and quinaldine in mixtures with tri-styrene [13], and by Prevosto et al [14] in
polyphenylglycidylether (PPGE), diglycidyl ether of bisphenol-A (DGEBA), and dipropylene
glycol dibenzoate (DPGDB). Co-invariance of τα, n, and τJG for different T and P were
found in these neat glass-formers and a component (quinaldine) in binary mixtures. This is
a remarkable experimental fact that challenges any theory to explain, but is fully consistent
with the CM. In addition, the calculated τ0 is in agreement with the observed τJG within
experimental uncertainty in all cases. The new results verify the CM explanation (equation (2))
of the invariance of the α-dispersion at constant τα for different T and P .

3. The α-dispersion of a component in binary polymer blends is invariant to T and P

when τα is constant

Roland et al [15, 16] reported a dielectric spectroscopic study of the component dynamics
in the miscible blend of poly(vinyl methyl ether) (PVME) and poly(2-chlorosytrene) (P2CS).
For the PVME component (which has the more intense loss peak due to its higher polarity),
the shape of the segmental relaxation loss peak depends only on the relaxation time and is
otherwise independent of thermodynamic conditions, i.e., different P and T combinations.
The same result was obtained before by Alegria et al [17] for the PVME component in the
miscible blend of PVME with polystyrene (PS). This property of the component dynamics of
miscible polymer blends is in accord with the general behaviour of neat materials discussed
in the preceding section. Several models have been proposed to address the component
dynamics of polymer blends [18–20]. None of these models except that based on the CM
model [21–27] consider the dispersion of the α-relaxation of a component in the blend (or
in its neat state), and naturally these models cannot address the observation of the invariance
of the dispersion of the segmental relaxation of the component PVME for different T and P
at constant relaxation time. On the other hand, the CM for component dynamics of polymer
blends is based on considering the dispersion of the segmental relaxation of the component
in different environments i due to composition or concentration fluctuations. As discussed in
detail in published works [21–26], the segmental relaxation in environment i with relaxation
time ταi has its own coupling parameter ni , and the corresponding Kohlrausch function with
stretch exponent, (1 − ni), determines the dispersion. In the same manner as shown for neat
glass-formers in the preceding section, the CM ensures co-invariance of ταi and ni (or the shape
of the loss peak contributed by i ) for different T and P . The observed segmental relaxation
of the component is composed of contributions from all i , and hence its shape depends only
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on the relaxation time and is otherwise independent of thermodynamic conditions (T and P
combinations), as observed for PVME in two different blends.

The property of the dynamics of a component in polymer blends discussed in the
paragraph above is also found in mixtures of two small molecular glass-formers as reported
by Capaccioli [13]. The systems he studied by dielectric spectroscopy at ambient and elevated
pressure are mixtures of 5% and 10% quinaldine with tri-styrene. Since the dipole moment
of quinaldine is much larger than that of tri-styrene, the observed spectra are contributed
effectively by the motions of quinaldine. In each mixture, the shape of the α-loss peak of
quinaldine is invariant to T and P when τα is held constant, just like PVME in blends with
P2CS and PS. The invariance of the shape was found to hold for more than one constant τα

value. Moreover, as mentioned in the previous section, τJG of the quinaldine component is also
invariant to T and P when τα is kept constant, and is in agreement with the calculated τ0.

4. Changing separation of the JG relaxation from the α-relaxation of the faster
component with composition of the blends and mixtures

There are examples other than the ones discussed in the previous section that show that
the component dynamics of binary polymer blends and binary mixtures of molecular glass-
formers are similar. Another one is the increasing separation between the α-relaxation and
the JG relaxation of the faster component, measured by (log τα − log τJG) at constant τα , with
increasing concentration of the slower component in a blend or mixture. For mixtures of small
molecular glass-formers, this was seen in picoline mixed with tri-styrene or ortho-terphenyl
by Blochowicz and Rössler [28] and discussed in [26], as well as in quinaldine when mixed
with tri-styrene or low molecular weight polystyrene [13]. This trend is in agreement with the
prediction (log τα − log τJG) ≈ n(log τα + 11.7), which follows from the CM equation (2),
and the expected increase of ni of the faster component with increasing presence of the
slower component. Concentration fluctuations are inevitably present in mixtures. They cause
additional broadening of the α-relaxation of the faster component and a distribution of ni ,
making it impossible to extract even the most probable n̂ by fitting the observed α-dispersion
of the faster component by the Kohlrausch function, unlike the case of pure glass-formers.
Fortunately, at sufficiently low concentration of the faster component, the additional broadening
by concentration fluctuations is minimized. The fit gives a good estimate of n̂, which can be
used to calculate the τ0 and hence τJG from the relation τ0 ≈ τJG of that faster component in the
mixture. This procedure was carried out for the mixture of 5% quinaldine with tri-styrene [13],
and the calculated τ0 is in agreement with τJG of the observed JG relaxation coming from
quinaldine.

For polymer blends, examples include the component PVME blended with PS [29], where
the unresolved JG relaxation of neat PVME become resolved on addition of PS (it is worthwhile
mentioning that the two resolved secondary relaxations of neat PVME, located below 120 K at
1 Hz, are not the JG relaxation; instead they originate from intramolecular degrees of freedom).
The situation is like picoline or quinaldine in tristyrene, where the JG relaxation of picoline
and quinaldine are unresolved in the pure state but becomes resolved with addition of tri-
styrene [13, 26, 28]. The appearance of the JG relaxation of PVME in the isochronal spectra
is particularly clear when more than 50% of PS is present in the blends. For example, see
the data for 70% PS in figure 3 of [29a] and the coloured figure 2 of [29b] where both the
α- and the JG β-relaxations of PVME are evident in the isochronal loss spectrum at 1 Hz.
The authors of [29a] gave in their figure 1(b) the temperature of about 280 K at which the
α-relaxation frequency is 1 Hz, while from their figure 7 we can see that the JG β-relaxation
frequency is 1 Hz at about 225 K. The α-relaxation time increases much more than the JG
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Figure 1. Normalized dielectric loss contributions due to α- and β-relaxation processes of LB-
PBD in the pure melt (closed and open circles respectively) and the 25/75 LB-PBD/CR-PBD blend
(closed and open triangles respectively) at 198 K obtained by Bedrov and Smith [31b]. The lines
are fits by one-sided Fourier transforms of Kohlrausch functions. The vertical arrows indicate the
angular frequencies, ωβ f ≡ 1/τβ f , where τβ f = τ0 f and τ0 f are calculated by the appropriate CM
equation (see text).

relaxation time of the PVME with increasing PS content. Thus, the separation between the
α-relaxation and the JG relaxation of PVME, measured by (log τα − log τJG) at constant τα,
increases with increasing concentration of PS in the PVME/PS blends. Another example is
poly(ethyl methacrylate) (PEMA) blended with poly(4-vinylphenol) [30]. Neat PEMA has a
resolved JG relaxation, which continues to be observed in the blend. When PEMA is blended
with the slower poly(4-vinylphenol), (log τα − log τJG) of the PEMA component is observed to
increase at constant τα [30].

Another similar example is given by molecular dynamics simulations of model miscible
polymer blends consisting of chemically realistic 1,4-polybutadiene (CR-PBD) as the slow
component (higher Tg) and PBD chains with reduced dihedral barriers as the fast component
(LB-PBD) with lower Tg by Bedrov and Smith [31]. The simulation was designed to study
the influence on the segmental α-relaxation and the JG β-relaxation of the fast component
when mixed with the slow component. Before blending, the relaxation times of the α- and
JG β-relaxations of the neat fast component are too close together, so the faster but weaker JG
β-relaxation cannot be easily resolved (like neat picoline, quinaldine or PVME). However, with
addition of the slow component, they found a monotonic increase in the separation between
the α- and the JG β-relaxations of the fast component, whereby the latter becomes resolved.
The increased separation between the two is due to the strong increase of the α-relaxation
time, τα f , of the fast component (accompanied by an increase of breadth of the α-dispersion
or decrease of the stretch exponent, βα ≡ 1 − n f , of the Kohlrausch function used to fit
the correlation function; see figure 1) with increasing concentration of the slow component,
concomitant with a much smaller change of the relaxation time, τβ f , of the β-relaxation of the
fast component. These results from simulations by Bedrov and Smith are fully compatible with
the experimental data for polymer blends and mixtures mentioned above and the explanation
by the CM as shown in a recent comment on Bedrov and Smith by us [32] and figure 1. The
decrease of βα and the concomitant increase of the separation between τα f and τβ f with increase
in the concentration of the slower CR-PBD are consistent with the prediction of the CM due to
increase of the coupling parameters n f i . Bedrov and Smith [31b] tested the CM quantitatively
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by using their parameters obtained from their fits of the dipole moment autocorrelation function
of the fast LB-PBD component, DACF( f )(t) = Aβ exp[−(t/τβ f )

ββ f ] + Aα exp[−(t/τα f )
βα f ].

From the relaxation times, τα f and τβ f , obtained by simulation, they used the CM relations,

τα f = [t−n̂ f
c τ0 f ]1/(1−n̂ f ) ≈ [t−n̂ f

c τβ f ]1/(1−n̂ f ), to calculate the most probable β̂α f ≡ 1 − n̂ f

and compare it with βα f from their fit to the DACF. The crossover time tc of the CM is not
available from the simulation, and 2 ps is assumed to be its value as experimentally found
for polymers [31b]. The β̂α f calculated by Bedrov and Smith are significantly larger than
βα f for blends with 10, 25, 50, 75 and 100% of the fast component as shown in figure 6
of [31b], which would suggest that the CM prediction is not in quantitative agreement with
molecular dynamics simulation. This failure of the CM for simulation data may cast doubt
on the quantitative success of the CM in explaining the dynamics of the fast component in
dielectric relaxation experiments on real mixtures [13]. However, we point out that there is an
important difference between the two cases. In dielectric experiment, τ0 f is long compared

with tc = 2 ps and in this case the relation, τα f = [t−n̂ f
c τ0 f ]1/(1−n̂ f ) ≈ [t−n̂ f

c τβ f ]1/(1−n̂ f ),
obtained by using the continuity of the correlation function across tc, is applicable. On the
other hand, τβ f from simulation (and hence also τ0 f ) is only a little more than a decade longer
than tc = 2 ps, and moreover n̂ f is exceedingly large in blends rich in CR-PBD. In this case, one

should use the relation, τα f = [(1− n̂ f )t
−n̂ f
c τ0 f ]1/(1−n̂ f ) ≈ [(1− n̂ f )t

−n̂ f
c τβ f ]1/(1−n̂ f ), obtained

by using the continuity of relaxation rate across, tc [1], which will be shown elsewhere [31c].
Thus, these equations of the CM should be used to test the simulation data against the CM. In
figure 1, we demonstrate such a test for the pure LB-PBD and 25% LB-PBD blend. Normalized
dielectric losses from the α- and β-relaxations of the fast LB-PBD in the pure melt and
in the 25LB-PBD/75CR-PBD blend from simulation at 198 K are shown (same as figure 8
in [31b]). The one-sided Fourier transform of the Kohlrausch function, exp[−(t/τα f )

βα f ], that
fits well the frequency dependence of α-relaxation loss peak have parameters {τα f = 1.34 ns,
βα f = 0.22} for the 25LB-PBD/75CR-PBD blend, and {τα f = 134.9 ps, βα f = 0.44} for the
pure LB-PBD melt. From these parameters, we calculate τβ f from the appropriate relation,
τβ f = τ0 = [(1 − n̂ f )

−1(tc)n̂ f (τα f )
1−n̂ f ], where tc = 2 ps and (1 − n̂ f ) = βα f . The last

relation is justified by the negligible concentration fluctuation found in these blends [31d]. The
reciprocal ωβ f ≡ 1/τβ f of the calculated value of τβ f , shown in figure 1 by the location
of the vertical arrow, is in good agreement with the angular frequency of the LB-PBD β-
relaxation loss peak for the 25LB-PBD/75CR-PBD blend as well as for the pure LB-PBD melt.
Similar good agreements have been found for the other blend compositions [31c] within the
uncertainties or errors involved in deducing the parameter values from the data by Bedrov and
Smith with the assumption that the α- and β-relaxations are additive in composing the DACF.
Thus, it seems that the CM fares reasonably well in explaining quantitatively the simulation
results.

The simulation data also provide information on the slower CR-PBD component in
the blend. The α-relaxation time of the slower CR-PBD component becomes shorter, and
interestingly its frequency dispersion becomes narrower when compared with that of neat CR-
PBD. In [32], it is pointed out that this simulation result is also consistent with the prediction
of the CM of relaxation on the slower component. At low LB-PBD content in the blend,
broadening of the α-relaxation by concentration fluctuations is not that important, and hence
the narrowing caused by reduction of the coupling parameter of CR-PBD dominates and it
shows up in the simulation data of Bedrov and Smith. In fact, reduction of n of a slower
(higher Tg) component when blended with a faster (lower Tg) component had been seen before
for sorbitol or xylitol in mixtures with water [25] and sorbitol mixed with glycerol [24] and
explained by using the CM.
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5. Can anyone reliably predict quantitatively the segmental relaxation time of a
component in a polymer blend?

Several papers presented at the 4th WNEP are concerned with the dynamics of a component
polymer in binary polymer blends. The current vogue is to compare the segmental relaxation
time of a component with the Lodge–McLeish model [20], which stresses the importance
of the effect of self-concentration of a polymer in accounting for concentration fluctuations.
Composition fluctuations in polymer blends are different from mixtures of small molecular
glass-former. In polymer blends, a component has more repeat units of its own kind nearby
due to chain connectivity. This is correctly pointed out by Lodge and McLeish (LM). They
went on to suggest that the local composition is altered from the average value φ to an effective
concentration, φeff = φself + (1 − φself)φ, where φself accounts for the excess of segments due
to the chain connectivity. The modified Fox equation, Tg(φ) = [φeff/Tg1 + (1 − φeff)/Tg2]−1,
is then used to obtain Tg(φ) of the component. The segmental relaxation time in the blend,
τseg(φ), is calculated by modifying the Vogel–Fulcher–Tammann–Hesse (VFTH) equation
obtained for the component when it is in its neat state, τseg = τ∞ exp[B/(T − T0)], by only
replacing T0 by T0(φ). Here T0(φ) = T0 + [Tg(φ) − Tg]. In other words, the difference
between T0 (φ) of component in the blend and T0 of the neat polymer is exactly the same as
the difference between Tg (φ) and Tg of the neat polymer. The remaining VFTH parameters,
B and τ∞, are assumed not to change. Thus, in the LM model, the component segmental
relaxation time is given by τseg(φ) = τ∞ exp[B/(T − T0(φ))]. Lodge and McLeish suggested
that φself should be calculated from the Kuhn length of the component. However, the φself

calculated does not work in most cases and it has to be treated as an adjustable parameter to
yield agreement with experimental results [33–36]. Bedrov and Smith [31b] found for the LB-
PBD component that only φself = 0.0 provides a better description of the α-relaxation times for
the LB-PBD component in the 10% LB-PBD blend with CR-PBD, indicating that, within the
LM formulation, the segmental relaxation of the fast component is determined entirely by the
bulk composition of the blend. This is contrary to the spirit of the LM model which assumes
that the local, dynamically relevant environment for a segment differs in composition from that
of the bulk blend due to chain connectivity. The situation of the 50% LB-PBD blend is worse.
Bedrov and Smith found even for the best case with φself = 0.0, the Lodge–McLeish model
prediction still underestimates the slowing down of the α-relaxation of the LBPBD component.
Roland et al [15, 16] applied the LM model to their data of the PVME/P2CS blends, and found
that the modified Fox equation gives φself = 0.437 for the P2CS component, which is less
than the actual concentration. The result contradicts the enrichment due to the intramolecularly
bonded neighbouring segments. Moreover, one should not lose sight of the following facts
on the LM model. First, the concept of self-concentration in the LM model does not apply to
mixtures of small molecular glass-formers, and yet the component dynamics are similar to those
of polymer blends. Second, ad hoc assumptions (e.g. the VFTH parameters, B and τ∞, of the
polymer in the blend being the same as those of the neat polymer, and the formula for T0(φ)) are
made in arriving at the results of the model. Third, the use of the LM model is limited to fitting
the segmental relaxation time of a component in the blend, and hence cannot address the other
properties of the component dynamics discussed in this section. Fourth, the only link of the LM
model to the glass transition problem is the empirical Fox equation on which it is based, and
therefore it offers no help in understanding the more fundamental problem of the glass transition
in the simpler case of a pure polymer. These shortcomings of the LM model do not seem to deter
other workers on polymer blends from applying the model. This is because experimentalists
would like to make comparisons of their measurements with theoretical predictions, and the
LM model provides a prediction of τseg(φ). An effort could be made to make the CM more
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appealing to experimentalists by making assumptions as bold as in the LM model. For example,
the following assumptions can be made to arrive at a prediction of τseg,A(φ) for component A
in φA/(1−φ)C blends. (1) The primitive relaxation time of the component A, τ0A, is the same
as that of the pure A, which can be deduced from the VFTH fit to the segmental relaxation time
of pure A by applying the CM equation and has been verified experimentally by measurements
on polybutadiene [11]. (2) The most probable coupling parameter of component A in the
blend, n̂ A, is given by n̂ A = φeffn A + (1 − φeff)(n A + �n A), where φeff is calculated exactly
from the chain parameters according to the expression given by LM, and �n A is an adjustable
parameter. Finally, τseg,A(φ) is calculated by τseg,A(φ) = [t−n̂ A

c τ0A]1/(1−n̂ A). Assumption (1) is
equivalent in spirit to the assumption of LM to use the B and τ∞ parameters of the pure A for the
component A in the blend. For polymer blends, we accept the concept of self-concentration of
LM, and adopt the same formula proposed by them to calculate φeff from the chain parameters.
Assumption (2) introduces �n A as the sole fitting parameter, equivalent in spirit to the LM
model as letting φeff be adjustable. Thus, the assumptions made to calculate τseg,A(φ) by the
CM proposed here are no more or no less bold than those made by LM. With these assumptions,
and �n A adjustable, the calculated τseg,A(φ) may be in reasonable quantitative agreement with
experimental data. Although this proposal may make the CM more appealing for workers in
polymer blends to use, we will not propose it because the ad hoc assumptions made cannot be
justified. The LM model and possibly this hypothetical proposal from the CM are attractive to
some workers in polymer blends because they can predict τseg,A(φ) from the known parameters
of the pure polymer A and one adjustable parameter. However, since the factors determining the
dynamics of the segmental relaxation and the VFTH temperature dependence of its relaxation
time are not fully understood even for the pure polymer A, it is risky and overly ambitious to use
phenomenology or empirical relations with unverifiable assumptions to predict quantitatively
the segmental relaxation time of the same polymer when blended with another polymer.

6. Difference between chain diffusion dynamics and segmental dynamics of PEO in
blends with PMMA

Neutron incoherent scattering and neutron spin echo experiments were reported by
Wischnewski et al [37] on the Rouse-like diffusion of poly(ethylene oxide) (PEO, Tg ≈ 200 K)
chains in a miscible blend of PEO with poly(methyl methacrylate) (PMMA, Tg ≈ 400 K). They
found that the global dynamics of the fast PEO component in the blend is not determined by
the average local environment of a polymer segment as it is commonly believed that segmental
α-relaxation and global chain dynamics have the same temperature dependence. Actually,
much stronger temperature dependence of the PEO chain diffusion coefficient than the PEO
segmental relaxation time in blends with PMMA was found before. The tracer diffusion
coefficient of unentangled poly(ethylene oxide) in a matrix of poly(methyl methacrylate)
has been measured by Haley and Lodge [38]. The monomeric friction factor for the PEO
tracers determined by diffusion was found to be a much stronger function of temperature than
the corresponding PEO segmental dynamics measured at high frequencies by NMR. Over
the same temperature range from 125 to 220 ◦C, the tracer diffusion coefficient changes by
five orders of magnitude, while the segmental relaxation time of 3% up to 30% PEO in a
matrix of poly(methyl methacrylate) changes by less than one order of magnitude [35] (see
figure 2). This spectacular difference between the monomeric friction factors of the segmental
relaxation and the tracer diffusion of PEO in a PMMA matrix is consistent with the findings
of Wischnewski et al by neutron scattering in the same blends, and cannot be understood
by conventional wisdom in viscoelasticity of polymers that all mechanisms have the same
temperature dependence. The aforementioned behaviour of PEO in PMMA matrices is not
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Figure 2. Comparison between the temperature dependences of the segmental relaxation time for
(1) the PEO homopolymer (thin dashed–dotted line), and (2) 3% of PEO in PMMA (thick solid
line) with that of (3) the dielectric segmental relaxation time of PMMA from Bergman et al (thin
dashed line), (4) the terminal relaxation time of PMMA from Zawada et al shifted downward by 9.1
decades (open circles), (5) the shift factor of the softening dispersion of PMMA given by Plazek
and co-workers shifted vertically downward by 0.82 decade to coincide with the dielectric segmental
relaxation time at the highest temperature (thick dashed line), and (6) the monomeric friction factor
of the PEO tracers in PMMA matrix from Haley and Lodge (continuous thick line).

found in polyisoprene/poly(vinylethylene) (PI/PVE) and blends. In the PI/PVE blends, global
and local segmental motions of each component have been compared [33], and they exhibit
about the same dependences on temperature. The many orders of magnitude difference of
the friction factors of global and local segmental dynamics and their drastically different
temperature dependences found for tracer PEO in a PMMA matrix, but not in the PI/PVE
blends, poses yet another challenging problem in the component dynamics of polymer blends.

The segmental dynamics of PEO in PMMA was given an explanation before [27]. It was
demonstrated that the predictions of the CM on the PEO dynamics in PEO/PMMA blends from
0.5% to 30% PEO are consistent with the experimental findings that τseg of the PEO component
is nearly composition independent over the entire composition range, and is retarded by less
than one order of magnitude when compared with τseg of pure PEO [35]. The cause of this
unusual behaviour of τseg of the PEO component is due to the high frequencies (31–76 MHz)
used in the NMR measurements [35], resulting in primitive relaxation times τ0 of the PEO
component that are short and not much longer than the crossover time tc of the CM [27]. The
CM explanation of the unusual short-time segmental dynamics of PEO in the PEO/PMMA
blends found by using NMR at high frequencies also applies to the similar short-time dynamics
of PI in PI/PVE blends probed by the same high-frequency NMR technique [39] or by quasi-
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elastic neutron scattering [40]. At such high frequencies, the segmental dynamics of PI is barely
affected by blending with PVE.

The more recent PEO tracer diffusion measurements of Haley and Lodge [38] have
uncovered yet another problem of the decoupling of the global dynamics from the segmental
dynamics of PEO in PMMA. Needless to say, this problem and segmental dynamics problem
of the PEO component in PMMA are related and have to be explained simultaneously. The
diffusion of a tracer PEO chain in PMMA matrix involves global motion which is different
from the local segmental relaxation in the nature and length-scale of the dynamics. The
tracer PEO chain cannot diffuse without some motion of the matrix PMMA chains. Thus,
the temperature dependence of the diffusion coefficient or the monomeric friction coefficient
of the PEO tracer chain is determined by the motion of the matrix PMMA chains. The
length-scale of the PMMA motion necessary for the PEO tracer to diffuse depends on the
molecular weight of the PEO tracer. In figure 2 we reproduce for high molecular weight
PMMA its dielectric segmental relaxation time [41], the shift factor of the Rouse dynamics
in the softening dispersion measured by Plazek and co-workers [40] from 114 to 189 ◦C, and
the shift factors of the entangled terminal dispersion obtained by Zawada et al [43] from 176
to 212 ◦C. These PMMA shift factors for motion at widely different length-scales, though
different, all have much stronger temperature dependence than the segmental relaxation time
of 0.5% to 3% of PEO in a PMMA matrix measured by high-frequency NMR [35]. For the
low molecular weight unentangled PEO tracer used by Haley and Lodge [38], the shift factors
of the PEO tracer diffusion coefficient may be closer to that of the Rouse dynamics of the
PMMA matrix given by Plazek and co-workers because of compatible length-scales. It could
be accidental, but nevertheless remarkable, that this Rouse dynamics shift factor of PMMA
changes by about the same order of magnitude as the PEO tracer diffusion coefficient over the
same temperature range, as shown in figure 2. Exact agreement is not expected between the
temperature dependence of the PEO tracer diffusion coefficient and any of the shift factors of
pure PMMA shown in figure 2.

From the considerations given above, we can rationalize why the PEO tracer diffusion
dynamics have a much stronger dependence on temperature than the corresponding PEO
segmental dynamics detected by high-frequency NMR in probe concentrations of PEO in
a PMMA matrix. These results are unlike the PI/PVE blend systems in which global
and local motions have been compared, and it was found that the segmental and terminal
dynamics exhibited nearly the same dependences on temperature and composition [33]. For
an explanation, let us consider the PI and the PVE component segmental dynamics measured
by NMR at high frequencies and compare them with the longest global relaxation times
determined by pulsed field-gradient NMR (PI) and rheology (PVE) in a common temperature
range. The segmental relaxation times of PI and PVE in several blends including those of neat
PVE and PI measured by Min et al [39] are reproduced in figure 3. The pulsed field-gradient
NMR data for PI and rheology data for PVE have the same temperature and composition
dependence [33], but are not shown in figure 3, for simplicity. To compare the temperature
dependence of the same segmental and terminal dynamics of PI in 30% PEO/70% PVE blend
(lower solid squares in figure 3) with those of PVE in the same blend, we shift the segmental
relaxation time of PI (lower solid squares) vertically so that the shifted PI data (upper solid
squares) coincide with the PVE data at high temperatures. By inspection, it is clear that
the segmental and terminal dynamics of PI and PVE have nearly the same dependence on
temperature throughout the range of measurements. Similar conclusions can be drawn for the
other compositions. Therefore, in the PI/PVE blends, the diffusing PI chain sees all chains
including PVE with dynamics having about the same temperature dependence at all length-
scales from segmental to terminal. Naturally, the global relaxation time of PI has about the
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Figure 3. Segmental correlation times for both components in PI/PVE blends at various
compositions. The data for the PI component in the 30% PI/70% PVE blend are shown by the line
with solid squares on top of it. These data for PI are shifted vertically for the purpose of comparing
with the temperature dependence of the segmental relaxation time of the PVE component in the
same blend. For details, see text and figures in [33, 39].

same temperature dependence as its segmental relaxation time in the PI/PVE blends. The
same argument holds for the PVE component. Hence, for each component, the ratio of the
longest relaxation time to the segmental relaxation time is independent of both temperature
and composition, as observed in experiments [33, 44]. The situation of the global dynamics
of PI in PI/PVE blends is entirely different from the diffusion of PEO chains in PEO/PMMA
blends, where at all length-scales the dynamics of PMMA have much stronger temperature
dependences than the segmental dynamics of PEO.

7. JG β-relaxation, like α-relaxation, is sensitive to thermodynamic history and condition

We have seen from the discussions in section 2 that the ratio τJG/τα is invariant for different
T and P when τα is kept constant in many glass-formers. From this property alone, it can
be inferred that, like τα , the JG relaxation time, τJG, has to be sensitive to pressure and
temperature and the conjugate variables, volume and entropy. Two papers presented at the
4th WNEP [14, 45] reported obtaining different glass structures of the same glass-former
by different thermodynamic paths. Starting at the some temperature Ti above Tg at ambient
pressure, one path is first elevating the pressure to Pf until the liquid is transformed to a
glass and then cooling the glass down to a final temperature T f . A different path is to
cool the liquid under ambient pressure from Ti to T f at which the liquid is transformed to
a glass, and then elevate the pressure up to Pf . Thus, the initial and final temperatures
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and pressures are the same, but the two glasses have different densities. The interesting
observation is that the JG relaxation time, τJG, differs by an order of magnitude or more
in some glass-formers including bis-5-hydroxypentylphthalate and polyphenylglycidylether
(PPGE). Even faster non-JG secondary relaxations such as that in phenolphthalein (PDE) show
a dependence of its relaxation time on the thermodynamic path, but the change is significantly
smaller [46]. Glasses such as dipropylene glycol dibenzoate obtained with different cooling
rates also show a significant difference in τJG, and τJG increases with ageing [47]. Similar
results were obtained for several other glass-formers [48]. These experimental facts about τJG

all indicate that τJG is sensitive to density, ρ, just like τα . This property of τJG is expected by
the CM because of the relation between τα and τ0 ≈ τJG given by equation (2) now rewritten
as τJG(ρ) ≈ τ0(ρ) = [τα(ρ)]1−ntn

c to show explicitly the dependence of τJG on density.
Several experiments on different glass-formers have shown that the dielectric strength of the
JG relaxation, �εJG, changes its temperature dependence near Tg [49, 50]. �εJG has a stronger
temperature dependence above Tg than below Tg, which again indicates that the JG relaxation
is sensitive to a change of the temperature dependence of density when crossing Tg.

The evidences presented above to show that τJG and its strength are dependent on density
should have an impact on the controversy of whether or not τJG in the liquid state has the
same Arrhenius temperature dependence as that of the glassy state [51–57]. Usually, near
and above Tg, τJG and τα are not far apart and it is not possible to determine τJG without
using some procedure. One procedure is the Williams hypothesis (often called the Williams
Ansatz) that the total correlation function including the α and the β relaxations is ϕ(t) =
fαϕα(t) + (1 − fα)ϕαϕβ(t). At the time Williams proposed his Ansatz, he did not have the
benefit of recent experimental facts to distinguish β-processes that are JG secondary relaxations
from non-JG secondary relaxations that are intramolecular in origin [7, 8]. The Ansatz was
applied by others to resolve JG and non-JG secondary relaxations without distinguishing them,
as for example those secondary relaxations considered in figures 1(a)–(f) of [52]. We now know
that JG and non-JG secondary relaxations have distinctly different properties. JG relaxation has
properties mimicking those of the α-relaxation, but not non-JG relaxation. An example is the
pressure dependence of the JG relaxation time and the weaker pressure dependence or pressure
independence of the non-JG relaxation time. Everyone seems to agree that the relaxation
times, τβ , of most if not all secondary relaxations have Arrhenius temperature dependence
in the glassy state. However, some workers believe that the temperature dependence of
τβ in the liquid state has the same Arrhenius temperature as that of the glassy state when
extrapolated to temperatures above Tg. This belief may hold for non-JG secondary relaxation,
particularly those non-JG relaxations that are well separated from the α-relaxation, and its
Arrhenius relaxation time line does not intersect the α-relaxation time line above Tg. Such non-
JG relaxations are basically decoupled from the α-relaxation, and its Arrhenius temperature
dependence can hold for its relaxation times above and below Tg. In fact, the secondary
relaxations of PEA and PH shown in figures 1(a) and (b) of [52] are such trivial non-JG
relaxations. For JG relaxation, we do not see how this belief can be consistent with the
experimental evidences presented in the preceding paragraph that both its relaxation time τJG

and strength �εJG are density dependent together with the well-known fact that the temperature
dependence of the density in the liquid state is different from that in the glassy state. Moreover,
the belief by some workers is entirely based on their use of the Williams Ansatz to fit dielectric
spectra. However, the Ansatz of Williams at best is just a working hypothesis devoid of
fundamental justification. Besides, there are cases in which the Williams Ansatz when applied
still yields stronger temperature dependence of τJG above Tg than the Arrhenius temperature
below Tg. An example is the application to the JG relaxation of 2-picoline in mixtures with
tri-styrene [57]. In the case of the neat glass-formers sorbitol and xylitol, the JG relaxation
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can be separated further apart from the α-relaxation by applying pressure. Consequently, at the
elevated pressure of 1.8 GPa, the JG loss peak of sorbitol is completely resolved [56]. A similar
situation is the JG relaxation of quinaldine in a mixture with 95% tri-styrene [13], which is
well separated from the α-relaxation of quinaldine at Tg because τJG is shorter than τα by seven
decades when τα = 100 s. The most probable τJG can be determined objectively from the
frequency at the loss maximum in both cases without any need of using the William’s Ansatz
or other procedure to determine it at temperatures above Tg. The τJG so obtained clearly shows
it has much stronger temperature dependence above Tg. Theoretical support of this behaviour
comes from the CM equation (2), τJG(T ) ≈ τ0(T ) = [τα(T )]1−ntn

c . This equation indicates
that τJG has Arrhenius temperature dependence below Tg because there τα is Arrhenius and n is
temperature independent. Above Tg, again from the CM equation, τJG necessarily has a stronger
temperature dependence as a consequence of the stronger VFTH temperature dependence of τα,
and in general n if not constant would decrease with temperature.

Finally, in the Williams Ansatz, the α- and β-relaxations are assumed to be statistically
independent of each other. Users of the Williams Ansatz to analyse experimental data must
be aware that this assumption is incorrect at least when the β-relaxation is of the JG kind, as
shown by new spin–lattice relaxation weighted stimulated-echo experiments of Böhmer and
co-workers on several glass-formers [58]. The experimental data show a correlation between
the α- and β-relaxations. As stated by Böhmer and co-workers, among theories and models
of glass transition, the CM has a correlation between the α- and the JG β-relaxations. A more
specialized and less specific approach than the CM was put forward by Cavaille et al [59].
From a quite different starting point these authors came along with an equation similar to the
second relation of the CM (equation (2)), but tc is treated as a floating parameter. Nevertheless,
this approach by Cavaille et al also made a correlation between the α- and the JG β-relaxations,
and hence this approach is consistent with the findings of Böhmer et al [58].

Let us return to the crossover of temperature dependence of the JG β-relaxation of the fast
component (picoline [28, 57], tert-butylpyrindine (TBP) or quinaldine (QN) [13]) in blends
with tri-styrene from Arrhenius temperatures dependence below Tgf to a stronger temperature
dependence above Tgf, where Tgf is the glass transition temperature of the fast component.
The crossover has been simply explained by the CM. Such crossover is seen for a resolved
secondary relaxation of the PVME component in blends with 70% or more PS by Lorthioir
et al [29]. For us, this is the JG β-relaxation of the PVME component in the blends. It was
not resolved in neat PVME just like neat 2-picoline, TBP and QN. It becomes resolved when
blended with PS, in exact analogy to mixing 2-picoline, TBP or QN with tri-styrene. This is
due to increase in the coupling parameter n on blending with a less mobile component and
the α- and the JG β-relaxations of the PVME are more separated as consequence of the CM
relation, (log τα − log τJG) ≈ n(log τα + 11.7), discussed in section 4. On the contrary, due to
the smaller value of n in neat PVME, the true intermolecular JG process is not resolved from
the α-peak, and shows up as an excess wing. Lorthioir et al were not aware of these facts and
the two resolved secondary relaxations of neat PVME (observed isochronally below 120 K at
1 Hz) are not the JG β-relaxation. Hence, they thought all secondary relaxations of neat PVME
have been found, and the resolved process in blends with 70 and 80% PS (observed near 225 K
isochronally at 1 Hz) is a new process which they call the α′-relaxation process. The mechanism
they proposed to explain its origin is PVME segmental motion occurring in an environment
consisting of ‘frozen’ PS chains. The shorter α′-relaxation time was explained as speeding up
of the segmental α-relaxation of PVME in analogy to polymers confined to nanometre-scale
dimension or dimensions. However, they also argued that PVME confined in such a frozen
environment can only execute local conformational transitions and this is the α′-relaxation
process they have in mind. Local conformational transition involving the entire repeat unit
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of a polymer is basically the JG β-relaxation of any polymer, including PVME. Therefore,
it is superfluous for Lorthioir et al to invoke new concepts in blends including ‘frozen PS
chains’ and analogy to speeding up of relaxation by ‘confinement’ to arrive at essentially JG
β-relaxation of PVME in the blends.

Lorthioir et al actually observed the α-relaxation of the PVME component in addition to
the α′-relaxation or the JG β-relaxation in mixtures with 70% and 80% PS. For the 70% PS
blend, the α-relaxation frequency να ≡ (1/2πτα) is 1 Hz at T ≈ 280 K (see either figure 3
of [29a] or the coloured isochronal in figure 2 of [29b]). For some unknown reason, they did
not plot any of the data for τα of the 70% PS blend on the Arrhenius plot in figure 7 of [29a]
or figure 4 of [29b]. Had they put at least one data point (1000/T = 3.57, log(τα/s) = −0.8)

onto the plot, it would indicate the coexistence of the α-relaxation and the faster relaxation
all coming from the PVME component. At the high concentration of 70% PS, τα of the
PVME component is expected to have stronger temperature dependence (large steepness or
fragility index) [21, 23]. This suggests that τα would reach 100 s at a temperature not too far
below 280 K, TgPVME, the glass transition temperature of the PVME component. Assuming
that TgPVME = 275 K for the 70% PS blend, the corresponding reciprocal temperature,
1000/TgPVME = 3.64, is near the location where the relaxation time of faster process crosses
over from Arrhenius to a stronger dependence, as can be seen clearly from the inverted triangles
in figure 4 of [29b]. This crossover of temperature dependence is exactly the same as that found
for the JG β-relaxation of 2-picoline, TBP and QN in mixtures with tri-styrene, which further
supports the identification of the faster process as the JG β-relaxation of PVME in the blends.

The interpretation by Lorthioir et al actually contradicts the Gaussian nature of
concentration fluctuation of miscible polymer blends like PVME with PS. They stated that ‘the
molecular nature of this α′-relaxation has certainly to be related with the segmental α-relaxation
of PVME, but in a constrained geometry’. This statement implies that the concentration
fluctuations engender a bimodal distribution of PVME in the blend. One part of PVME is ‘in a
constrained geometry’ giving rise to the α′-relaxation, and the other part is responsible for the
α-relaxation. This contradicts the fact that the distribution of PVME caused by concentration
fluctuation is Gaussian or nearly Gaussian in the miscible blend. Fluctuations leading to
PVME being totally surrounded by less mobile PS can occur only in the tail of the Gaussian
distribution and hence its contribution to the dielectric loss is small compared with the α-
relaxation, in contradiction to experimental observation. The explanation of short α′-relaxation
time as speeding up of the segmental α-relaxation of PVME in analogy to polymers confined to
nanometre-scale dimension or dimensions is another assumption needed in order to explain the
observed short relaxation time of the α′-relaxation. Although PS is less mobile, it still exerts a
molecular interaction with the PVME. The situation here can be compared with the molecular
dynamics simulation of the effect of a frozen Lennard-Jones (LJ) liquid acting as parallel walls
confining the same LJ liquid [60, 61]. The frozen LJ particles still maintain an interaction
with the LJ liquid near the interface like the less mobile PS on PVME, but the results of the
simulation show that the α-relaxation of the confined LJ liquids near the frozen LJ walls is
slowed down [60, 61] instead of speeding up, in contradiction to the assumption of Lorthioir
et al.

8. Breakdown of Stokes–Einstein and Debye–Stokes–Einstein relations

The experimentally observed breakdown of the Stokes–Einstein and Debye–Stokes–Einstein
relations was the subject of discussion in Round Table 1, and the current status of theoretical
explanations proposed was reviewed by Richert [62]. Measurements of dynamics in glass-
forming liquids indicate that the shear viscosity, η, the self-diffusion coefficient, D, and
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the rotational correlation time, τc, all slow down dramatically with decreasing temperature.
However, the products Dη and Dτc are not constant but increase as the temperature is lowered
towards Tg, as seen in 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene (TNB) and other glass-
formers [63–70]. Hence, there is enhanced translational diffusion, and the data do not satisfy
the Stokes–Einstein (SE) and the Debye–Stokes–Einstein (DSE) relations. One explanation
offered is based upon the spatially heterogeneous dynamics in supercooled liquids [63, 67]. It
assumes that regions of differing dynamics give rise to the Kohlrausch relaxation function,
exp[−(t/τi )

1−ni ], in ensemble-averaging measurements. The decoupling between self-
diffusion and rotation occurs because D and τc are averages over different moments of the
distribution of relaxation times, with D ∝ 〈1/τ 〉 emphasizing fast dynamics, while τc ∝ 〈τ 〉
is determined predominantly by the slowest molecules. In order for this explanation to
be consistent with the observed monotonic increases of the products Dη and Dτc as the
temperature is lowered toward Tg, the breadth of the relaxation time distribution has to increase
(or the Kohlrausch exponent, 1 − n, has to decrease) correspondingly. However, Richert and
co-workers [65] recently reported that the dielectric spectra of TNB are characterized by a
temperature-independent width (e.g. (1 − nd) is constant, equal to 0.50) from 345 to 417 K.
The Tg of TNB is 342 K. Photon correlation spectroscopic and NMR [67] measurements all
indicate a temperature-independent distribution of relaxation times. Similar results of enhanced
translational diffusion and breakdown of SE and DSE relations but temperature-independent
(1 − nd) were found in other glass-formers, including ortho-terphenyl [66], and in sucrose
benzoate [69]. Thus, the data for TNB, ortho-terphenyl and sucrose benzoate contradict the
explanation based on spatial heterogeneities.

A different explanation was offered by the CM [70, 71]. It was pointed out that the
breakdown of the SE and DSE relations in glass-forming liquids are special cases of a more
general phenomenon that different dynamic observables μ weight the many-body relaxation
differently and have different coupling parameters nμ (i.e., different degrees of intermolecular
cooperativity) which enter into the stretch exponents of their Kohlrausch correlation functions,

〈μ(0)μ(t)〉/〈μ2(0)〉 = exp[−(t/τμ)1−nμ]. (3)

In the CM, the observed Kohlrausch relaxation time, τμ, is related to the primitive
relaxation time, τ0μ, by the relation

τμ(T ) = [t−nμ

c τ0μ(T )]1/(1−nμ), (4)

where tc ≈ 2 ps for molecular and polymeric glass-formers. Applying equation (4) to each
observable μ we can immediately see that the observable having a larger nμ will bestow a
stronger temperature dependence for its relaxation time τμ. This is because the primitive
relaxation times of all observables τ0μ, uninfluenced by many-body relaxation dynamics,
should have one and the same temperature dependence. To demonstrate enhanced translation
diffusion by the CM, we need to know not only either nη for viscosity, nd for dielectric
relaxation or nNMR for NMR, but also nD for diffusion. Unfortunately, for translational
diffusion, so far only the diffusion constant, D, has been available from experiments. The
complete time dependence of the correlation function for self-diffusion or probe diffusion
of TNB, ortho-terphenyl and sucrose benzoate have not been measured, and nD cannot be
determined. Theoretical arguments have been given before [70] to show that nη is larger than
nD , but this by no means settles the problem until experimental data prove it in the future.
Nevertheless, assuming nD < nη or nD < nd , from the CM equation (2) when applied to
variables η or d for μ, and compared with that for variable D, it follows that ταη or ταd has a
stronger temperature dependence than ταD . This is because in the CM all primitive relaxation
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times, τ0μ, have the same temperature dependence, i.e.,

τ0D(T ) ∝ τ0d(T ) ∝ τ0η(T ). (5)

Hence, we have an explanation of the breakdown of the SE and DSE relations. This
CM explanation holds whether nd and nη are temperature dependent or independent as long
as nD < nη or nD < nd [71]. In this manner, we have explained quantitatively for TNB
the stronger temperature dependences of ταη and ταd than that of ταD by taking a constant
nη = nd = 0.50 as found by Richert and co-workers by dielectric relaxation measurements
and assuming nD = 0.37 [71].

In spite of the success, the undesirable and arbitrary assumption of a value of nD less
than nη or nd has to be made in order to explain the breakdown of the SE and DSE
relations. A comprehensive experimental study of a supercooled molecular ionic liquid,
1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-HFP), [bmim+][PF6−], by Ito and
Richert [72] offers an opportunity to avoid making this assumption. This is because the
molecules in ionic liquids are charged: their dynamics of translational diffusion can be
fully characterized by ionic conductivity relaxation measurement as a function of frequency.
The coupling parameter nD is obtainable by fitting the frequency dependence of the ionic
conductivity relaxation to the Fourier transform of the Kohlrausch function. Ito and Richert
made isothermal conductivity relaxation measurements as a function of frequency on BMIM-
HFP. From the data they deduced the electric modulus relaxation time, τM , and the coupling
parameter nM = 0.49 ± 0.05. However, fitting the M∗(ν) data directly by the one-sided
Fourier transform of the Kohlrausch function and emphasizing the good fit to the main peak
of the electric loss modulus M ′′(ν) and its low-frequency flank yields a smaller nM ≈ 0.41.
Since τM is proportional to τD and nD is the same as nM , from the conductivity relaxation data
of Ito and Richert we can deduce nD as well as the temperature dependence of τD. In addition,
Ito and Richert measured the solvation dynamics and rotational dynamics of a probe molecule
as a function of time. From the correlation functions they obtained the solvation and rotational
relaxation times, τsol and τrot, and the corresponding coupling parameters, nsol = 0.70 ± 0.03
and nrot = 0.63 ± 0.05. They showed that τsol and τrot follow the temperature dependence of
η/T obtained by Xu et al [73] for more than ten decades, from sub-nanoseconds at room
temperature to seconds near the glass transition temperature Tg. On the other hand, τM

(and hence τD) follows this trend only for temperatures T > 1.2Tg, but its temperature
dependence becomes significantly weaker than η/T in the 1.1Tg > T > Tg range. In fact,
τD ∝ τM ∝ η0.73/T , i.e., we have a fractional SE or DSE relation in the 1.1Tg > T > Tg

range. This deviation is similar to the enhanced translational diffusion or fractional Stokes–
Einstein behaviour observed in TNB, ortho-terphenyl and sucrose benzoate.

Both the values of nM ≈ 0.5 given by Ito and Richert, or the other possible value
of nM ≈ 0.41, are smaller than nsol and nrot. Either one of these two possible values of
nM can explain the enhanced translational diffusion. In fact, we can deduce at once from
nsol = 0.70 ± 0.03, nrot = 0.63 ± 0.05 and nM = 0.49 ± 0.05 (or nM = 0.41) that

τM (T ) ∝ [τsol(T )](1−nsol)/(1−nM) = (τsol)
0.59 (6)

and

τM (T ) ∝ [τrot(T )](1−nrot)/(1−nM) = (τrot)
0.73. (7)

The fractional power in equation (7) is about the same as that observed. The one in
equation (6) is smaller, but is not unacceptable considering the uncertainties of the values of
both nsol and nM .
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9. Nanoconfinement

Swenson and co-workers [74] reported that in highly confined water, like the 6 Å thick water
layer in vermiculite clay and water in hydrated haemoglobin, they observed a relaxation
with Arrhenius temperature dependence that could be the local β-relaxation of water. Since
water is a very small molecule, the local β-relaxation must be its own JG relaxation.
The phenomenon that the cooperative α-relaxation is transformed to the JG relaxation by
nanoconfinement was found before in 1,2 diphenylbenzene (OTP) in 2 nm silanized glass
pores [75], by Anastasiadis et al [76] in poly(methylphenyl siloxane) (PPMS) thin films by
confinement in galleys of nanocomposites with width less than 2 nm, and by Schönhals and
co-workers for poly(dimethyl siloxane) (PDMS) and poly(methylphenyl siloxane) (PPMS)
confined in nanopores with size down to 2.5 nm [77, 78]. Additional evidences of
the transformation include the change from Vogel–Fulcher–Tammann–Hesse temperature
dependence to Arrhenius temperature dependence of the relaxation time with activation energy
characteristic of JG relaxation [75–78], and the dielectric strength changes from decreasing
with increasing temperature like that of α-relaxation to increasing with increasing temperature
typical of JG relaxation [77, 78]. The relaxation times of PMPS thin films in nanocomposites
and OTP and polymers confined in 2.5 nm glass pores are found to be close to the primitive
relaxation time of the bulk glass-formers calculated by the CM equation from the known
parameters n and τα of the bulk glass-formers [75, 79–81]. From this result, we can
infer that the cooperative many-molecule dynamics of these glass-formers under extreme
nanoconfinement are nearly totally suppressed, and that the observed relaxation times are those
of the primitive relaxation or the JG β-relaxation of the nanoconfined liquid, which is closely
related to but not necessarily identical to the JG β-relaxation of the bulk substances.

Torkelson [82, 83] used his fluorescence method to determine the nanoscale distribution of
the glass transition temperature of nanoconfined polymer films layer by layer due to either
enhancement or depreciation of molecular mobility by the presence of a free surface or a
strongly attractive substrate respectively. The effects on molecular mobility of the free surface
or the attractive substrate propagate layer by layer with attenuation into the polymer film. These
results of Torkelson have been explained by the CM in a recent paper [84].

Peter reported [85] the results of molecular dynamics simulations for free-standing and
supported thin films of a non-entangled polymer melt using a coarse-grained (bead-spring)
model. The substrate is a non-attractive smooth wall and it also enhances the mobility of
molecules nearby, although to a lesser degree than the free surface. They calculated the layer-
resolved incoherent intermediate scattering function for a supported film. The data show
that the monomer mobility is the highest at the free surface, it decreases monotonically as
one goes towards the centre of the film, and at some point it increases monotonically again
when approaching the smooth non-attractive wall. The layer-resolved intermediate scattering
function as a function of time covers segmental relaxation at shorter times and internal chain
dynamics at longer times and hence is more complicated than Lennard-Jones particles which
have no chain modes. Nevertheless, the part of the decay of the layered-resolved intermediate
scattering function due to segmental α-relaxation is most rapid at the free surface and becomes
increasingly slower and more stretched out in time as one goes towards the centre. If it were
possible to fit the time dependence of the segmental α-relaxation part of the layered-resolved
intermediate scattering function by the Kohlrausch function, exp[−(t/τ j )

1−n j ], the trend may
be described by simultaneous increases of τ j and n j , when going from the free surface layer
to the central layer. Such simultaneous increase of τ j and n j would be consistent with the
CM equation (2). The cooperative many-molecule α-relaxation dynamics of monomers in the
surface layer are much more reduced than those in the bulk-like centre of the film due to the
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absence of molecules on one side and reduction of intermolecular interaction and constraints
acting on monomers at the surface. Hence the surface layer has a smaller coupling parameter,
n1, and a shorter relaxation time, τ1, than either the central film or the bulk, a result that follows
immediately from the CM equation. The accelerated dynamics of the monomers in the very
first surface layer in turn have the effect of lessening the many-molecule α-relaxation dynamics
of monomers in the next layer, although it is not as effective as air or vacuum on the surface
layer. Hence the reduction of the coupling parameter is not as large as in the first layer. Hence,
n1 < n2 < ncentral � nbulk, and it follows from the CM equation that τ1 < τ2 < τcentral � τbulk.
Repeating the argument to inner layers, the trend exhibited by the layer-resolved intermediate
scattering functions from simulation is recaptured by the CM. The same kind of explanation
of simulation data for thin films had been done and published before [60] for films of binary
Lennard-Jones liquid particles confined by parallel walls formed by frozen binary Lennard-
Jones (LJ) particles [61]. The immobile LJ particles in the wall maintain their interaction with
the confined LJ liquid. Since they are immobile, they further slow down the many-molecule
relaxation in the first layer, resulting in an increase of the coupling parameter, n1, over that
of the central layer ncentral . In the same spirit as the argument given before for the simulation
of supported thin polymer films by Peter et al, we have n1 > n2 > n3 > · · · > n j >

n j+1 > · · · > ncentral, and it follows from the CM that τ1 > τ2 > τ3 > · · · > τ j > τ j+1 >

· · · > τcentral [60]. These expectations of the CM are realized in the simulations results of
Scheidler et al [61], from which we find that each of the layer-resolved intermediate scattering
functions is well fitted by the Kohlrausch function, exp[−(t/τ j)

1−n j ], and give n j and τ j in
the process. This information enables a quantitative test of the CM in calculating τ j from n j

using the CM equation, τ j = [t−n j
c τ0]1/(1−n j), tc = 2 units of LJ time, and τ0 deduced from

the simulation of the bulk binary LJ particles and used for all layers. The calculated τ j are
in accord with the simulation results within the uncertainties of the deduced values of n j by
Scheidler et al.

Torkelson’s data do not give such detailed information as the intermediate scattering
function from simulation, and hence no quantitative comparison can be made with the CM.
Nevertheless, his data indicating that the effects of the free surface and the strongly attractive
substrate propagate layer by layer into the polymer film are consistent with the CM results.
Torkelson also reported that the size of the reduction of Tg of polymer thin films correlates
with the ‘fragility’ or steepness index m of the polymer, apparently under the same conditions.
For the family of amorphous polymers, m is proportional to n [86]. Hence his findings can be
restated as a correlation between the size of the reduction of Tg with n. Rephrased this way,
Torkelson’s result could be consistent with the CM expectation because, from the CM equation,
the change of segmental relaxation time is much larger for the polymer with larger n, for the
same size of reduction of n by nanoconfinement.

Weeks [87] reported changes of colloidal particles dynamics by confining them between
two parallel walls, and found that the particle motion is greatly slowed down. The extent of the
slowing down increases immensely with increasing particle concentration, φ, shown by Weeks
for three different samples. We recall from mean-square displacement and light scattering data
for the same colloidal suspensions that n increases with φ [87, 88]. Thus, the observation
of Weeks can be restated as follows. The extent of the slowing down of particle motion by
confinement increases with increasing n of the unconfined colloidal suspension. One may
recognize that this is just the analogue of (in the reverse direction) Torkelson’s observation of
increased reduction of T ′

g of nanoconfined polymers with n. Both can be rationalized by the
CM. There is even a closer analogy of the slowing down of colloidal particles by confinement
with slowing down of the same system by ageing [89], which is clearly due to increase in
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Figure 4. Relaxation map, log10(τ ) versus 1000/T , of the ν-process or the JG β-relaxation of
water in various aqueous mixtures [91], and 6 Å thick water layer in a fully hydrated Na-vermiculite
clay [96], and 50 wt% water in PVME [92]. The location of 1000/Tgm for each mixture is indicated
by the vertical arrow pointing at the crossover where the relaxation time τν changes temperature
dependence from VFTH like above Tgm to Arrhenius below Tgm. Here Tgm is defined as the
temperature at which the α-relaxation time of the mixture, τα , attains the long time of 103 s. The α-
relaxation time τα is shown for two mixtures, 35 wt% water in PEG400 (black closed diamonds) and
35 wt% water in 6EG (blue closed circles). The crossover of temperature dependence of τν at Tgm

can be seen by the vertical arrow pointing downward at τν(Tgm), the open diamond for 35 wt% water
in PEG400, and open circle for 35 wt% water in 6EG. For the other mixtures, data for τα are not
shown to avoid crowding. For the mixture of 35% water/PEG6, yellow right-pointing filled triangles
represent τν and the yellow arrow indicates the crossover at Tgm. For the mixture of 35% water in
3EG, the grey left-pointing filled triangles represent τν , and the grey arrow indicates the crossover
at Tgm. For the mixture of 35% water in 4EG, the red filled upward-pointing triangles represent τν ,
and the red arrow indicates the crossover at Tgm. For the mixture of 35% water in 5EG, the green
upward-pointing filled triangle represent τν , and the green arrow indicates the crossover at Tgm. For
the mixture of 40% water in 2EG, the blue filled triangles represent τν , and the blue arrow on the
extreme right indicates the crossover at Tgm. For the mixture of 40% water in glycerol, the filled
orange squares represent τν , and the orange arrow indicates the crossover at Tgm. For the mixture
of 50% water/PVME, magenta filled stars represent τν , and the magenta arrow on the extreme left
indicates the crossover at Tgm. The blue crosses represent the relaxation time of 6 Å thick water
layer in vermiculite clays.

n as shown in [71], while the structure was invariant [90] implying no observed increase in
length-scale, a conclusion made by Weeks and co-workers [90].

10. JG relaxation of water

In the previous section we have mentioned that for several glass-formers, when nanoconfined
to very small dimension or dimensions, the relaxation observed is devoid of many-molecule
cooperativity and the α-relaxation becomes the local JG β-relaxation with relaxation time
having Arrhenius temperature dependence. The 6 Å thick water layer in vermiculite clay [74]
also shows a single relaxation with Arrhenius temperature dependence for its relaxation time
over an extended temperature range from about 200 K down to 134 K (see figure 4). The
activation energy is about 40 kJ mol−1, which is approximately the energy required to break
two hydrogen bonds of a water molecule. These properties indicate that the relaxation directly
observed in the 6 Å thick water layer in vermiculite clay is the local JG β-relaxation of water.

Since bulk water crystallizes, the relaxation of water is often studied in mixtures with
hydrophilic glass-formers that are susceptible to hydrogen bonding with water. These include
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1-propanol, ethylene glycol (EG), ethylene glycol oligomers, poly(ethylene glycol) 400 and
600, fructose [91], tri-propylene glycol [92], and poly(vinylpyrro1idone) (PVP) [93, 94]. In
these aqueous solutions, a faster relaxation is observed in addition to the slower relaxation
by broadband dielectric relaxation. The slower relaxation has the VFTH-like temperature
dependence of a primary α-process which is due to the cooperative motion of water and solute
molecules hydrogen-bonded together that gives rise to the glass transition of the mixture, Tgm,
observed also by calorimetry (for two examples see figure 4). From the increase of its dielectric
strength with water content in the mixtures [91], as well as the increase of its relaxation time, τν ,
on replacing the protonated water by deuterated water [92], it is clear that the faster relaxations
originate from water; these have been collectively referred to as the ν-process [91]. Its dielectric
strength, �εν , increases monotonically with temperature with an elbow shape that indicates a
change of slope at Tg [91]. These properties are typical of secondary relaxation in neat glass-
formers [49], and can be considered as another indication that the ν-process is the secondary
JG relaxation of the water component in the aqueous mixtures.

At temperatures below Tgm of the mixture, τν of all mixtures have Arrhenius temperature
dependence with activation energies of around 50 kJ mol−1, which is not too different from that
of the JG β-relaxation observed in the 6 Å thick water layer in vermiculite clay, as demonstrated
in figure 4. These properties of τν are also indications that the ν-process in the aqueous
mixtures are the local JG process of the water component. Although the ν-processes in various
mixtures are non-cooperative JG relaxations of water, their τν are not expected to have the same
value because the concentrations as well the chemical structures of the other components are
different. Nevertheless, the variations of τν are within a few decades over extended temperature
ranges where τν are Arrhenius with about the same activation energy. Another general property
of the ν-process is the change of temperature dependence of τν near Tgm from the Arrhenius
dependence below Tgm to stronger temperature dependence above Tgm [91–94]. This property
is demonstrated in figure 4, where the vertical arrows indicate the locations of 1000/Tgm as
well as the location where τν changes its temperature dependence in the aqueous mixtures.
Here Tgm is defined as the temperature at which the α-relaxation time of the mixture, ταm ,
has attained the value of 103 s. It can be seen by close inspection that in general τν changes
its temperature dependence near 1000/Tgm. Such a change of temperature dependence of τν

has been found for the JG relaxation time, τJGf of the fast component in several non-aqueous
mixtures at the glass transition temperature, Tgf, of the fast component [13, 28, 57, 95], and
also in neat glass-formers [56]. Below Tgf, the temperature dependence of τJGf is Arrhenius,
but it changes to stronger (VFTH-like) temperature dependence at higher temperatures after
crossing Tgf. Thus, the crossover of temperature dependence observed for τν is analogous to
that of JG relaxation in non-aqueous mixtures, and this common behaviour further supports
the identification of the ν-process as the JG β-relaxation of the water component in aqueous
mixtures. It can be seen by inspection of figure 4 that, for aqueous mixtures of comparable
water concentrations, τν(Tgm) is shorter if Tgm of the mixture is higher. This trend is the
same as that found in the fast component of non-aqueous mixtures discussed in section 4,
and is expected by the CM because the coupling parameter of the fast component is larger
if the mobility of the slower component is further decreased, or Tg of the slower component
is higher. This crossover of τν from VFTH-like to Arrhenius temperature dependence at
Tgm was given a different explanation by Cerveny et al [92]. They explain the crossover as
being due to water confined by the freezing of the aqueous mixture at temperatures below
Tgm, the same mechanism invoked by Lorthioir et al [29] to explain the origin of the faster
relaxation of PVME in blends with PS with concentration of PS 70% and higher. At the end of
section 7, we have presented facts and arguments to show that this explanation is unnecessary
for the faster relaxation of the PVME component in the blends. By unnecessary, we mean the
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introduction of the unproven concept of ‘confinement’ and the assumption that the enhanced
mobility arises in the same manner as in glass-formers subjected to nanoconfinement, but
the end result is local relaxation of PVME in the PVME/PS blends or local water molecule
relaxation in the aqueous mixtures, which is no different from what we have identified as
the JG β-relaxation of PVME or water. The explanation of the faster PVME relaxation in
PVME/PS blends as being due to the effect of confinement by the ‘frozen’ PS is wrong, as
explained in section 7. This similar argument used to explain the crossover of the temperature
dependence of τν at Tgm in aqueous solution is likely incorrect because τν(Tgm) generally
becomes shorter on increasing the concentration of water [91, 92]. One would expect that
the more stringent the confinement (the less water in the mixture), the larger would be the
proposed effect, i.e., the relaxation time at the crossover, τν(Tgm), would be shorter. This
expected behaviour from the effect of ‘confinement’ proposed contradicts the experimental
results [91, 92].

If we know the coupling parameter, n, of bulk water, then we can take the observed
JG β-relaxation time, τJG, of the 6 Å thick water layer in vermiculite clay approximately
as the primitive relaxation time of bulk water and use the CM equation (2) to calculate the
α-relaxation time, τα, of bulk water. This operation is opposite in direction to that used
in [75, 79–81] on nanoconfinement to calculate τJG from the known τα and n of the bulk
glass-former. The coupling parameter, n, of bulk water is not known at temperatures below
about 210 K. However, the Kohlrausch exponent βK of bulk water at higher temperatures has
been given by other workers. The values of βK are 0.65 [96], and 0.60 [97, 98], from which
the corresponding value of n are 0.35 and 0.40. Assuming that n continues to have these
plausible values at lower temperatures, and tc = 2 ps, τα of bulk water is calculated from
the τJG of the 6 Å thick water layer in vermiculite clay by equation (2). The temperature at
which the calculated τα = 100 or 1000 s is inferred as the glass transition temperature of
bulk water. The results shown in figure 5 indicate that Tg of bulk water lies between 165 and
175 K [99]4. This estimate of Tg of bulk water depends critically on the values of βK given by
others [96–98]. It is also possible that the actual n of bulk water or water in some other forms
and configurations probed experimentally by others could be smaller. If this is true in any of
these cases, then Tg can be much lower. For a demonstration, the arbitrary choice of n = 0.10 is
also made in figure 5, and the calculated Tg is lower and near 136 K, the generally accepted Tg

of water [100–102]. More experimental work has to be done before we can be sure of the true
coupling parameter of bulk water and make a definite conclusion. The purpose of the exercise
here in figure 5 is to demonstrate the potential use of the CM to deduce the Tg of bulk water.
When the coupling parameter of bulk water is known with certainty, its Tg can be obtained.
However, we are confident that the relaxation in the 6 Å thick water layer in vermiculite clay
and the ν-process in aqueous mixtures presented in figure 4 are the JG β-relaxation of water in
various environments. This result should have important implications on biomolecular function
because of the role played by JG β-relaxation as emphasized by Frauenfelder in connection
with protein dynamics [103].

11. Conclusion

During the 4th WNEP, the issue of the relevance of the theory and the model of the glass
transition to experiments was raised. This is a timely issue because the field of the glass
transition has basically been experimentally driven from the beginning until the present time.
An abundance of experimental data has been accumulated for a variety of glass-forming

4 For instance, Tg = 175 K according to [92].
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Figure 5. Relaxation map, log10(τ/s) versus 1000/T , of water. Black filled triangles are the JG
β-relaxation times from dielectric spectroscopy data for a 6 Å thick water layer in fully hydrated Na-
vermiculite clay [74]. Blue filled circles, green stars and red squares are the cooperative α-relaxation
time of bulk water calculated from the CM equation (2) with an assumed value of tc = 2 ps, and
τ0 taken to be the same as the JG β-relaxation times of the 6 Å thick water layer, and n = 0.4,
0.35, and 0.1 respectively. Vertical arrows mark some of the values for Tg of bulk water proposed
in the literature: for instance Tg = 175 K [92], Tg = 165 K from [99], Tg = 136 K from [100], and
Tg = 129 K from [101].

substances waiting for theoretical treatment and explanation. Novel glass-formers as well
as new experimental facts continue to be discovered every now and then. Thus it would
be vain to entertain a theory of glass transition, no matter how mathematically rigorous or
conceptually persuasive, if its relevance to experiments is limited or if it already contradicts
general experimental results such as some of the ones discussed above.

The purpose of this paper is to show the broad relevance of the coupling model (CM) to
experiments. This goal could have been accomplished by reviewing past accomplishments of
the CM in explaining experimental data or explaining just one more new experimental fact.
However, we have chosen a more challenging way to demonstrate the relevance of the CM
to experiments by addressing a number of new experimental and computer simulation results
reported and discussed at the 4th WNEP. Some of the new results have not been previously
communicated in publication, and will appear in papers published in the same volume as the
present paper and elsewhere.
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